

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR
 (AUTONOMOUS)

M.Tech I Year I Semester Regular Examinations January-2026
SWITCHED MODE POWER CONVERTERS
 (Power Electronics)

Time: 3 Hours**Max. Marks: 60**(Answer all Five Units $5 \times 12 = 60$ Marks)**UNIT-I**

1 a Explain the basic operation of a Buck switching regulator with the help of a neat circuit diagram and waveform. CO1 L1 6M
 b A Buck converter steps down 24V to 12V at a load current of 2A. Determine the duty cycle, average inductive current, and peak-to-peak inductive current for a switching frequency of 25kHz with $L=200\mu\text{H}$. CO1 L3 6M

OR

2 a Discuss the major factors affecting buck regulator efficiency. Explain conduction and switching losses. CO1 L3 6M
 b A Buck regulator has an input of 20V, output of 10V, and output current of 5A. If the diode drop is 0.7V and transistor saturation voltage is 0.3 V, calculate the efficiency. CO1 L4 6M

UNIT-II

3 a Describe the concept of master-slave outputs in Push-Pull converters and Explain how multiple secondary windings affect load regulation. CO2 L4 6M
 b A Push-Pull converter provides two outputs: 5V/3A and 12V/1A, input voltage = 36V, duty cycle = 0.45. Design the secondary turns required for each output. CO2 L3 6M

OR

4 a Explain the basic operation of a Forward converter with neat wave forms and Discuss role of magnetizing current, free wheeling path, and reset winding. CO2 L2 6M
 b A forward converter has: $V_{in}=24V$, $N_p: N_s = 1:0.5$, duty cycle = 0.4, Load = 10Ω . Determine:
 (i). Output voltage (ii). Average inductor current

UNIT-III

5 a Explain the sequence of switching and mid point voltage formation in a Half-Bridge converter and Discuss how the two series capacitors maintain voltage balance. CO3 L2 6M
 b A Half-Bridge converter operates from 350 V DC. Output required = 28 V, duty cycle = 0.42. Determine the ideal transformer turns ratio and the primary applied volt seconds during the ON interval.

OR

6 a Explain the basic operation of a Full-Bridge converter and discuss how all four switches contribute to transferring power to the transformer. CO3 L2 6M
 b A Full-Bridge converter operates with: Input = 300 V, Duty = 0.48, Transformer ratio = 8:2. Find the secondary voltage during the active interval and maximum ideal output voltage.

UNIT-IV

7 a Derive the expression for output voltage of a DCM Flyback converter in terms of input voltage, duty cycle, load, and transformer turns ratio. CO4 L3 6M
 b A DCM Flyback converter operates from 24V input, delivers 5V at 2A, with $N_p: N_s = 1:4$ and $D=0.33$. Calculate the peak primary current and energy stored in magnetizing inductance.

OR

8 a Describe the operation of Continuous Conduction Mode (CCM) Flyback converters with magnetizing current waveforms. CO4 L2 6M
b For a CCM fly back operating from 18–36V input, delivering 12V, 5A output, with $N_p:N_s=3:1$ and $D=0.4$ at $V_{in(\min)}$, calculate the average and peak magnetizing currents.

UNIT-V

9 a Define the deficiencies of voltage-fed PWM full-bridge converters for circulating current, transformer saturation, cross-conduction. CO5 L1 6M
b A PWM full-bridge converter operates from a 300V DC bus at duty cycle 0.48. Calculate the effective primary voltage applied during the active interval.

OR

10 a List the advantages and drawbacks of a buck voltage-fed full-bridge topology with respect to switch stress, transformer utilization, and EMI. CO5 L1 6M
b A buck voltage- fed full-bridge has input=220V and produces a 55V output at 8A with 92% efficiency. Calculate input current and input power.

*** END ***